The core mission of WPZ is to provide economic policy advice based on rigorous empirical evidence and cutting edge theoretical research. To promote the knowledge transfer from the frontier of academic research to policy advice, we invite leading academics from international elite universities to summarize policy relevant insights of their empirical and theoretical research agenda.

William R. KERR
Professor of Entrepreneurial Management
Harvard Business School
wkerr@hbs.edu

Innovation and Business Growth

Large innovating firms face a trade-off between improvements of existing product lines and creating entirely new business opportunities. This essay presents a theoretical framework capturing these two alternative directions of private R&D. It then explores in a case study how IBM introduced a new innovation strategy to better identify and implement newly emerging business opportunities and was thereby able to manage a turnaround from a declining and loss making to a dynamic and most profitable company.
When approaching the knowledge frontier, an economy’s capacity to innovate must shift from imitation and differentiation towards more radical and more risky innovations that aim at entirely new products and services. Tertiary education, basic research and technological infrastructure become more critical factors in activating private innovation and generating continued growth.

Patent protection allows firms to cash in on successful innovations for a while, but tense competition from potential and actual new competitors forces them to continuously invest in new R&D. In a firm’s lifecycle, innovation-driven growth creates the need to enter world markets for further growth. In the cross-section, exporting firms and multinational companies are thus substantially more productive and larger than other firms with domestic sales only.

Innovation-based growth is a process of creative destruction, reflecting market entry and exit of young firms, and the creation of new product lines and closing down of old ones by large firms. Labour and capital must flow to new uses. About half of a country’s productivity growth is due to a targeted allocation and ongoing reallocation of investment and employment to more valuable uses. When a country moves closer to the knowledge frontier, innovations become more risky and factor reallocation must occur on a larger scale. Flexible capital and labour markets can support innovation by facilitating factor reallocation. Welfare policy should combine unemployment insurance with low job protection and active labour market policies for retraining and supporting job search. Financing should shift from credit to relatively more equity financing, giving a larger role to stock markets, venture capital and private equity.

These and other ideas are explored in this report in five essays by Philippe Aghion, Ufuk Akcigit, Ramana Nanda and Matthew Rhodes-Kropf, William Kerr, and Mark Schankerman, based on the invited lectures at the CEPR conference “Moving to the Innovation Frontier” held on 19-20 January 2015 in Vienna.
Contents

About the Contributors
Foreword

Editorial
Christian Keuschnigg

1. **Competitiveness and Growth Policy Design**
 Philippe Aghion
 5

2. **R&D Policies and Economic Growth**
 Ufuk Akcigit
 31

3. **Innovation and Business Growth**
 William R. Kerr
 41

4. **Regional Variation in Venture Capital: Causes and Consequences**
 Ramana Nanda and Matthew Rhodes-Kropf
 55

 Mark Schankerman
 73
3 Innovation and Business Growth

William R. Kerr
Harvard Business School

3.1 Introduction
Innovation and the pursuit of new business opportunities is essential for growth at the firm level; moreover, it provides the foundation for an economy to achieve new levels of technological prowess, productivity and, ultimately, prosperity. This chapter describes recent work in economics and management scholarship on how firms grow. Given the other contributions in this conference volume, we focus specifically on questions surrounding the types of innovations that large and small firms pursue and how it impacts their relative growth rates. Developing evidence suggests that as firms become larger they have trouble maintaining the external innovations that are most powerful for growth, instead focusing increasingly on internal work and enhancements. Section 3.2 outlines a theoretical model for these dynamics to fix ideas and highlight some key economic considerations. In some cases, the growing internal focus on firm size is optimal, but in most cases it is not and it reflects struggles of larger companies to maintain dynamic capabilities that they otherwise desire. Section 3.3 then provides a case study of IBM – how it observed these limitations within itself in the late 1990s, and then the actions it took to correct the gaps. We use the IBM story to highlight in Section 3.4 several emerging best practices for how firms can best structure themselves to maintain the innovations that are important for their growth.

3.2 Theoretical background
One model of corporate choices towards innovation and the underlying heterogeneity in these processes is depicted by Akcigit and Kerr (2015), who build upon prior micro-macro work such as Klette and Kortum (2004) and Lentz and Mortensen (2008). The model considers why types of corporate venturing and innovation vary along the firm size distribution; this provides an important input into understanding the relationships between innovation and business growth for firms. The Akcigit-Kerr model draws a distinction between two types of innovation that companies may perform: internal innovation and external innovation. Internal innovation, sometimes called ‘exploitation’ innovation by organisational behaviour scholars, concentrates on improvements to a company’s existing product lines, enhancing the capabilities and offerings that the company already has in order to increase profits. External innovation, sometimes referred to as ‘exploration’ innovation, focuses on creating new ideas to add to the
Moving to the Innovation Frontier

In the Akcigit-Kerr model, this exploration process can be understood as improving upon and taking ownership of product lines belonging to other companies.

Figure 3.1 depicts an illustrative firm in this model, which we label f_i and how this firm engages in these two types of innovation. Each product line is represented by one of the vertical lines on the chart, and every possible product line in the economy falls somewhere on the 0-to-1 continuum. There is an infinite number of possible product lines, and each firm owns some finite subset of these lines. The ‘quality’ of the underlying technology for each product line is represented by the height of the line in this figure, following classic ‘quality ladder’ depictions for studying technological progress (e.g., Aghion and Howitt, 1992). A higher quality product line brings in more profit than a lower quality one.

To the right of the figure are the four product lines originally owned by the firm (the lines shown in black and with z_j at their base). The firm can engage in internal R&D and innovation to improve the quality of the lines they hold. Firms have profit incentives to improve these technologies, but they also face costs for conducting R&D. The rate at which they make these investments is z_j, with some probability of success in each period thus determined (innovation outcomes are stochastic). A firm will invest money up until the costs outweigh the expected benefits. If an innovation is realised, the quality of the product line is incremented by an amount, λ, and the company gains more profits from the improved line. In the figure, two of firm f_i’s internal R&D attempts have been successful as an example.

Figure 3.1 Internal and external innovation

Companies may also undertake external R&D to ‘capture’ a product line owned by another company. As with internal R&D, exploration R&D efforts succeed with a probability that depends upon the amount of the investment being made. The firm will spend an amount of money, x, on exploration R&D up to the point that the costs equal the expected gains. If a company’s attempt is successful, then it acquires a new product line – chosen at random along the 0-to-1 interval – at
the quality level that said product line has reached prior to this acquisition. The firm then increments the quality of this product line by an amount, s_k. This is shown in the figure by the line on the left with x at the base. The black section represents the quality of the product line at the time that firm f'captured' it, and its quality is then incremented by s_k as a result of the innovation undertaken by firm f. The magnitude of s_k is determined in the model by a number of factors, including technology waves, how long a product line has existed, and various other inputs that are beyond the scope of this chapter. This form of innovation is also sometimes called ‘horizontal innovation’ and is closely related to the frequently discussed concept of ‘creative destruction’.

Firms are constantly pursuing both forms of innovation, and are thus competing with each other on two fronts: trying to improve the quality of the product lines that they already own, and trying to capture product lines away from other companies. The model also takes into account entrepreneurs or new entrants by modelling individuals who own no product lines but wish to enter the industry by engaging in this creative destruction. The ability to consider both internal and external innovations and to jointly model them in a fully specified, general-equilibrium setting is one of the major theoretical contributions of this model. This is an important step, as it begins to allow economic models to take better account of why differences in the number of small firms versus big firms might matter for the types of innovations undertaken and the economic impact observed.

The key feature of this model is the manner in which the different types of innovation scale up as firm size increases. In particular, the model predicts that internal innovation scales with firm size much more than external innovation does. As firms grow larger, the proportion of their R&D budget that they allocate to internal R&D will scale in a linear fashion as more product lines are added. However, external R&D does not scale up with company size as completely. This observation has been made at times in the empirical literature regarding innovation, and is being applied here to theory; the full version of the model also undertakes a more complicated quantification analysis to formally measure these properties.

As an example, consider the extremes of firm size. A new entrant or entrepreneur starts with zero existing product lines, so they cannot, by definition, engage in internal R&D. Their entire budget will therefore be allocated to external innovation. Similarly, a very small firm with only one or two product lines still has a very limited opportunity to spend money on internal innovation, but there is considerable opportunity for external R&D. At the other end of the scale, a firm with 1,000 product lines has a much greater opportunity to spend money on internal efforts, and we see the proportions shift in that direction. It is important to note that this does not reflect the absolute amounts of money spent – a large firm may spend more in aggregate on external R&D than a small firm does, but these exploratory expenditures will account for a smaller proportion of their budget than at a small firm.

Data collected from the US Census Bureau and the NBER Patent Database on firm R&D and patenting behaviour exhibit the scaling that the model predicts. For example, using the 2008 Business R&D and Innovation Survey, there is a -0.16 correlation between firm size and the share of R&D that the firm reports is directed towards business areas and products where it does not have existing revenues. Similar negative correlations are found for questions about the share
of firm R&D being directed to technologies new to markets. Similarly, using the citations that firms make on the patents they file, there is a 0.11 correlation between firm size and the share of backward citations that are made to a firm’s own prior work. Firms with larger past patent portfolios are mechanically more likely to self cite, and Akcigit and Kerr (2015) shows that larger firms are more likely to exhibit abnormal rates of self citations compared to Monte Carlo simulations of their expected self-citation rate. Other evidence is also provided in the paper.

By itself, these differences in innovation behaviour across the firm size distribution might not result in important economic outcomes, but the study by Akcigit and Kerr goes further and shows how external innovation is associated with greater employment growth than internal innovation. That is, the average firm growth impact that comes from exploratory work is larger than when firms focus on just enhancing their existing product lines, and also the growth spillovers into the broader economy are larger. The data thus indicate that firm growth rates depend on the kinds of innovation undertaken, and that firms that engage in relatively more internal innovation have slower growth rates than firms that spend proportionately more on external efforts. Thus, we often see larger firms growing at a slower rate than smaller firms or new entrants, and we also find that these smaller, newer firms make disproportionately large contributions to major innovations. This again connects back to allowing for a model that can link firms of different sizes to different types of innovation investments, and ultimately to growth consequences for the firm and the economy as a whole. This is where the academic literature is currently pushing and is starting to make substantial traction.

With this model in mind, the sensible next step is to examine the choices that firms make to see why they engage in the types of innovation that they do. The fact that larger firms devote less resources to external work can have both ‘efficient’ and ‘inefficient’ underlying reasons. The model can operate the same in both cases, but the business and policy prescriptions would be different. Why might larger firms engage efficiently in less external R&D? Akcigit and Kerr (2015) describes several reasons, with the most intuitive one being limits on the effective use of manager time. If a skilled CEO does not have the time or resources to add another product line to their workload, it would be a reasonable decision to focus on the existing lines rather than trying to add new ones. In this setting, because new entrants and small firms have fewer product lines, they have competitive advantages in pursing external-oriented work.

On the other hand, many management scholars have noted inefficient reasons why larger companies conduct less external R&D or are generally less successful at achieving external innovations. Among the issues discussed in the paper are overly bureaucratic organisations and short-term stock market pressures. In each of these settings, the CEO of the large company may in fact want to obtain more product lines and the associated growth, but struggles to do so. This is the scenario in which IBM found itself in the late 1990s, and we will use this case study to describe the setting further. After a successful turnaround following a near bankruptcy at the beginning of the decade, IBM’s new CEO was horrified to find that the innovation initiatives that he had set up at the company were failing because IBM’s culture and organisation was not conducive to that sort of exploratory R&D. We will use this case study to describe some reasons why large companies can struggle with external innovation and also to identify how
one firm sought to change itself to allow for better innovation outcomes and dynamic growth.

3.3 The IBM Emerging Business Opportunity story

Founded in 1911, IBM focused for most of the second half of the twentieth century on creating and selling computer mainframes and minicomputers. In the 1960s and 1970s, it controlled a 70% share of the mainframe industry market, and by the 1980s it was the most profitable company in the world. However, by the end of the decade the company had begun to decline, and by 1991 it was losing money. Between 1991 and 1993, IBM lost approximately $16 billion, and its market share dropped from 76% to 26%. This happened for several reasons. When smaller, startup companies began to make personal computers more easily available to individual consumers, IBM's leadership believed – based on past success – that they could enter and easily control the PC market. They did not recognise early enough that they needed to continue to innovate their PC platform and its marketing, and they did not realise until too late that the PC would bring about a seismic shift. While IBM's senior executives recognised that they were heading into trouble, they were unable to fix the problem.

Hoping to stop their slide and turn the company around, IBM brought in Lou Gerstner in 1993 to be the new CEO. Gerstner had led American Express and had been CEO of RJR Nabisco, and he was the first outside CEO to lead IBM. When he arrived, he found that IBM had fallen victim to what Donald Sull (1999) termed “active inertia”, in which a company's set of assumptions about its core business become blinders to new ways of thinking that will promote growth. IBM had spent the past several years focusing on existing products and short-term goals, with little attention paid to customers and their changing needs. In addition to ‘mainframe blindness’, Gerstner found that the processes for managing each of the individual 39 business units had continued to follow unproductive routines that rewarded existing product offerings and short-term results. Processes for starting new ventures were unclear and without a supportive infrastructure. The business units had their own profit and loss statements, but sales, manufacturing and distribution were spread across the company. This organisational structure, and the fact that there was no formal process for acquiring funding or strategy for development, made starting a new venture within the company haphazard at best. Missed opportunities were many. Finally, the culture at IBM fostered relationships that had, in some instances, become shackles that were maintained by a powerful bureaucracy, inflexible hierarchy and interdivisional rivalries.

Gerstner's first move was to stop the steady losses of money and customers, before he could start thinking about how to restart company growth. He decided to keep most of the senior management on board, and strove to create a sense of urgency by requiring them to write memos describing steps to fix their departments and the company as a whole. He also took steps to cut $7 billion in costs by shutting down underperforming departments and units, and established the “One IBM” philosophy, setting a vision for the company as a

1 This section and the next draw extensively from Applegate and Kerr (2015). The IBM story is described in detail in Garvin and Levesque (2004) and Applegate et al. (2008), from which this section also pulls material.
Moving to the Innovation Frontier

global information business, not just a computer company, and allowing them to strategise around new opportunities such as the internet. The company focused its new IBM Global Services business on value partnerships with clients and on eBusiness consulting.

IBM’s setbacks to innovation
Gerstner’s changes brought an almost immediate improvement, and by 1999 IBM was on a stable financial footing and looking to position itself to be able grow and make its way back to the top of the industry. A large part of the plan to do so involved being able to identify promising new ideas and directions in which to take the company, but IBM was having trouble in this area. IBM researchers were coming up with plenty of promising new ideas, but Gerstner was horrified to learn that, rather than giving them the opportunity to grow, some managers seemed to be obstructing progress or allowing new initiatives to fail. After learning on a Sunday morning that funding had been cut for a promising life sciences initiative due to short-term pressures, Gerstner demanded that action be taken.

Gerstner turned to Bruce Harreld, IBM’s Vice President of Corporate Strategy, to investigate why things were going wrong. Harreld and his team discovered that this life science example was part of a very consistent pattern across the company, and that IBM’s organisational structure was still fairly hostile to corporate venturing and the creation of new businesses, despite intentions otherwise. IBM's business units were having difficulty integrating new products and ideas that came out of R&D efforts, and managers frequently reduced budgets of growth initiatives or, having failed to commercialise the results of research, even cut the programmes altogether.

After interviewing individuals within the company who had been involved in several dozen missed opportunities and failed or struggling new venture startups, and documenting their findings in detailed case studies, Harrell and his team identified a number of high-level problems that were leading to the failure of new ventures. First, the company was mainly focused on serving the needs of existing customers, and managers were usually under considerable short-term pressures that restricted the amount of time that they could dedicate to exploring and supporting new ideas. IBM also had no useful approaches to learning about new ideas or identifying strategic needs, and no processes in place for selecting projects or funding them. The company used a complex ‘matrix’ organisational structure that was focused on existing brands and on geographies and industries for sales and marketing, and new ventures that did not fit well into the rigid matrix were frequently abandoned. IBM also tended to rely on profit-oriented metrics to evaluate projects and business units, which were ill-suited to measuring the progress of early-stage ventures that might not have reached the revenue-generating stage. This meant that R&D efforts were easy targets and often the first to be cut when a unit was having budget issues. And, the new ventures that IBM did undertake tended to be contained in separate ‘silos’ away from the rest of the company, which meant that it was difficult to effectively integrate new developments into the core business.

The rise of emerging business opportunities
In a very real sense, IBM had become too good at executing, reducing costs and achieving short-term success. While each of these outcomes are desirable, they also placed the company in a position where it struggled to undertake the longer-
Innovation and Business Growth

I

term exploratory innovation that would be necessary for the company’s sustained success. In short, IBM found itself in a position similar to that described by the Akcigit-Kerr model, but did not want to be there! Harreld and the rest of the IBM executive team addressed this issue by suggesting the creation of an Emerging Business Opportunity (EBO) initiative. This was based on a framework from the influential book on management from McKinsey Consultants, *Alchemy of Growth* (Baghai et al., 1999), which described a three-horizon model that classified business ventures and innovations according to the length of time until expected impact, return potential and level of uncertainty, as shown in Figure 3.2. The book posits that a company’s sustained growth rests on what the authors call a continuous pipeline of business-building initiatives that is attained by balancing short-term pressures for results with creating the space to conduct long-term and external innovation.

Figure 3.2 Horizons model to classify innovations

In the conceptual model in *Alchemy of Growth*, horizons are managed concurrently within an organisation, and each horizon requires its own separate management strategy. Horizon 1 (H1), situated at the lower left (low impact, low uncertainty), covers a company’s core business – the one around which a company has formed its identity, is organised, and has profited. H1 innovations extend or incrementally improve this business (e.g. the development of a new type of bumper by a car manufacturer for an existing line of sales). These efforts connect very closely to the lambda internal innovations we described earlier. While necessary to generate cash and provide resources for growth, H1 businesses – where most companies focus the bulk of their attention – will eventually flatten or become disrupted.

Horizon 2 (H2) encompasses emerging, fast-rising businesses that have the capacity to eventually transform the company and become an H1 business – for example, the development and scaling up of a new type of engine that will be the basis of a new model of car. These innovations and business opportunities often have already exhibited some signs that they will work out well, but much investment remains to be done to prove the opportunities and place them into
Moving to the Innovation Frontier

position for long-term profitability. Located in the middle of the figure, these ventures are medium term and have the potential for medium amounts of growth or transformation, but also come with an associated level of risk.

Horizon 3 (H3) is where the seeds of totally new ideas and business concepts are created in initiatives such as research projects and pilot programmes (for example, experimentation with rechargeable batteries for the purpose of developing an electronic car in the future). H3 initiatives carry with them a high risk of failure, and are often not completely aligned with a company's existing goals or product lines (and in some cases may even cannibalise current operations if ultimately launched), but they also have the highest growth potential. These are the businesses that can potentially transform a company and provide it with a long-term platform for growth. Although not all of the new H3 ventures will mature to become H1 businesses, nourishing them is necessary for a company's long-term future.

Measurements, expectations and leadership needs differ for each of the horizons. If the three horizons are managed concurrently to ensure healthy and continued growth, they 'cascade' through an organisation. IBM was already well set up to handle Horizon 1 ideas and projects, which returned reliable, short-term gains and could be managed within existing business units; there was never a misalignment of incentives between the managers and these profitable investments. By contrast, Horizon 3 businesses were where IBM was struggling, as they usually required extensive experimentation or research and took a long time to realise their potential, which did not fit well with IBM's current short-term focus. These were the ideas that IBM was most interested in cultivating, and they were the ideas that the EBO initiative targeted. This is very common for larger companies (and very fast growing smaller companies), where the core of the company's operations can limit the ability for other ventures to take root around them. It connects to and reflects the limited scaling built into the Akcigit-Kerr framework.

IBM quickly moved from investigation to action. To begin, Corporate Strategy and managers of individual business units worked together to identify Horizon 3 businesses. They decided upon seven EBOs that met their inclusion criteria, which included: the need for cross-business cooperation and resources; the maturity of the business plan and strategy (e.g. key market and technology risks appeared manageable and expertise was available to build the first offering and take it to market); the forecasted size of the market; and the potential for generating over $1 billion in three to five years.

Gerstner selected John Thompson, a 34-year veteran of the company, to oversee and coordinate the EBO initiative. He was highly respected at IBM, which gave the programme instant credibility. Thompson and Gerstner began rigorous monthly reviews of each of the seven initial EBOs, focusing on project milestones and developing business plans, rather than on meeting strict financial goals. Corporate Strategy also worked with Finance to identify expenses and revenue for each EBO, and Harreld set a goal of two percentage point annual incremental revenue growth from EBOs. Gerstner also began using the “horizons of growth” terminology in his speeches to the company. This helped to send the message that EBOs were not just a fad, but were something that IBM was taking seriously. By 2002, 18 EBOs had been identified and shepherded through the programme.

One of the first challenges that the EBO group encountered was the question of where to place EBOs organisationally. If innovation was to be the foundation
for success in IBM’s future, it could not be delegated to a ‘corporate incubator’ that received separate funding and was left on its own to build businesses that would later be thrown ‘over the wall’ to IBM’s business unit leaders, who were relentlessly focused on meeting the projections promised to Wall Street. Nor did the IBM team believe that accountability could be delegated to IBM’s research labs. While the contributions of the labs were a significant component of the company’s innovation culture and brand, executives wanted to ensure that EBOs were integrated into IBM operating businesses that interacted with the marketplace on a daily basis.

After much debate, IBM determined that both the business units and Corporate Strategy should share accountability for EBO efforts. Placement of the EBO teams within the business units facilitated the effective transition to high growth. Simultaneous oversight by Corporate Strategy, however, insured that the EBO initiative would secure significant senior management attention. Corporate Strategy also facilitated initial startup funding and, with business unit leaders, approved additional funding on an ongoing basis.

A second challenge involved managing risk. Horizon 3 ventures, like all new business ideas, came with an inherent uncertainty and a high chance of failure. To help mitigate the risk, IBM began by first thoroughly monitoring customers’ use of technology. By understanding how clients were using (or struggling with) current technology, IBM could better predict what future breakthroughs were needed, and hence determine where best to place its research bets. To ensure customer involvement, IBM also introduced its First of a Kind programme that required that IBM researchers identify a customer willing to partner on research projects and provide minimal financing of the project. IBM also managed the uncertainty risk inherent in breakthrough research by borrowing an approach used by oil companies when prospecting for oil (i.e. ‘test wells’) and staging financial and other resource commitments based on specific timelines and goals for each project (Kerr et al., 2014). Finally, in 2004, IBM launched a venture capital group to help monitor breakthrough innovations outside of the firm and serve as a technology transfer unit facilitating the commercialisation of discoveries and technologies developed in the company’s research labs and businesses.

By mid-2002, most of the initial EBO efforts had made considerable progress, and revenues were up sharply. Equally important, there was considerable enthusiasm for the programme. However, processes remained informal, and success depended on Thompson and Harreld’s personal interventions and networks. Financial and tracking systems, reporting relationships, review meetings, leader-selection criteria, and incentive mechanisms remained loosely defined. While this had worked for a small number of EBO projects, the informality and intensive hands-on management could not be effectively scaled. EBO leaders differed on when to move out from under the EBO umbrella and into an H2 business. Some were concerned about how they would weather the transition from qualitative measurements such as milestones, while others argued that the tough financial goals expected of an H2 were healthy and necessary for the EBO system to be taken seriously within company.

By now, Sam Palisamo, another IBM veteran, was CEO, and he challenged Harreld and his team to come up with a way to scale and systematise the EBO programme so that it did not require constant hands-on help. Harreld and the Corporate Strategy group assumed formal responsibility for the EBO process. They recognised that different categories of innovation had different
Moving to the Innovation Frontier

risk profiles and, as a result, different approaches were needed to manage risk during implementation. The type of risk and the approach to implementation were based on: (1) the size of the opportunity; and (2) the timing and level of resources required to exploit the opportunity. These parameters defined different categories of innovation with different risk profiles. Each category of innovation also required a different leadership and organisation model.

By the end of the decade, IBM’s adjustments to their EBO scheme had proven their effectiveness. By 2011, the company was making $19 billion in revenues – 20% of their top line – from businesses that started as EBOs, and IBM seemed to have successfully positioned themselves for further growth and innovation.

Lessons from IBM and corporate innovation for growth

IBM’s story provides a useful example of the importance of establishing an innovative structure within large, existing companies. Companies need to have the capabilities to engender dynamic growth. A number of lessons and best practices can be drawn from the successful efforts of others to jump start innovation and new business pursuit (Applegate and Kerr, 2015):

• Innovation is necessary for a company to continue to grow and survive. Eventually, even the most productive core businesses will run out of room to grow and will face loss of market share. Disruptive innovations from other players in the same industry can create even greater pressures to find new ways to grow. The empirical work in Akcigit and Kerr (2015) confirms this point.

• As companies grow larger, it can be harder to innovate. Established patterns and processes at large companies can hinder the ability of those companies to generate new products or businesses, even when it becomes clear that such a change is necessary. Donald Sull (1999) termed this phenomenon “active inertia”. Managers at all levels should be aware of common obstacles that can stifle innovation or new corporate ventures:
 ○ managers are frequently subject to short-term pressures, leaving them with little time/resources to devote to new ventures;
 ○ corporate objectives are often misaligned with the goals of the innovative process, and profit-oriented metrics that are a poor fit for early-stage innovations make these efforts easy targets for cuts during budget crises;
 ○ established structures, bureaucracy and internal politics such as interdivisional rivalries can make it difficult for changes to take root; and
 ○ companies can be restricted by the expectations of their customers and stockholders, both of whom are less likely to take a long-term view.

• Innovations can be broadly classified, and it is necessary for companies to be able to engage all three horizons simultaneously (what Mike Tushman calls “organizational ambidexterity”). If done correctly, innovations will continually cascade through the company, moving from uncertain H3 ventures to generating H1 ideas for mature ventures.
 ○ Separate horizons have different needs in terms of management, organisation, evaluation, and so on. Innovation or R&D units
have their own unique requirements in terms of, for example, management and metrics, different from those of established businesses/product lines. Profit levels or revenue growth may be more appropriate for Horizons 1 or 2, while Horizon 3 ventures may be better evaluated using project milestones and less-rigid metrics.

- Breakdowns in the execution of a company’s strategy can provide clues to where the company needs to focus on innovation. (As a starting point, since long-term companies should be engaged in all the horizons at once to build truly dynamic organizations.) Figure 3.3 illustrates this framework, where ‘gaps’ can occur, and how innovations in different horizons can address these gaps.
 - If a company’s or unit’s strategy is determined to be correct overall, but there is a breakdown between execution and delivering value (an ‘execution gap’), then typically this is an opportunity for an Horizon 1 innovation, which mainly enhances current offerings and improves execution.
 - If the breakdown seems to occur between the setting-strategy and execution phases (a ‘strategy gap’), then this is more likely addressable by Horizon 2 innovations, which are longer-term and more uncertain than Horizon 1, but still adhere to the same overall strategy. The goal here is building new capabilities to deliver against the strategy.
 - Horizon 3 ventures, by contrast, do not (necessarily) address strategy or execution gaps, but are attempts to expand into new businesses within a corporation or create new capabilities, possibly even creating entirely new strategic elements.

- One of the first and most important decisions encountered by IBM and other companies seeking to innovate is where to locate the new initiatives within the company. There is no ‘one size fits all’ solution. If there is a risk of cannibalisation of time or resources by core businesses, it may be beneficial to keep a new venture separate from the rest of the company – but this risks a situation in which an innovation is not well-aligned with the company’s goals and is difficult to integrate and move to a H2 business. On the other hand, while integrating new ventures into existing business units from the very start can afford them better access to funding and resources, it can also position them under managers who don’t have the time or know-how to properly nurture them.

- Senior management must create a sense of ‘urgency’ around the changes and new initiatives, and it is responsible for ensuring that there is buy-in at all levels of the company and that innovation and new ventures are taken very seriously. It is also important to staff new ventures with some of the firm’s best talent – although it is tempting to reserve the most capable workers for existing businesses with guaranteed returns, innovation efforts cannot succeed without skilled and dedicated workers.

- Although hands-on involvement from the CEO and senior management can be helpful in the early days of innovation initiatives, this may not be sustainable for the largest companies like IBM, and it is necessary
at some point to formalise the process of shepherding early-stage ideas through the stages up to Horizon 1. This includes financial and tracking systems, leader selection, processes for meetings and reviews, and incentive mechanisms. For other organisations, the CEO may retain more direct control over the moving parts.

- Companies should involve outside parties in the ideation and innovative process to minimise risk. In particular, firms can use customers and other outsiders as ‘early discovery systems’ by monitoring customers’ use of existing products to provide clues to their needs and generate likely ideas for new ventures.

- Perhaps most importantly, failure must be an option. Just as venture capital firms rely on their ability to terminate investments in projects that are not working out, large firms like IBM must be able to halt work on ideas that are not panning out and reallocate their resources elsewhere. This can be difficult for large firms – the relative availability of funding may lead to allowing struggling ventures to flounder for much too long and managers are likely incentivised to avoid or mask failures. Proper continuation choices are essential, and some of the best companies use outsiders to obtain objective opinions about which projects to push forward or to terminate.

In summary, the development of new businesses and innovations helps drive the growth of firms of the economy as a whole. Recent academic work is pushing the boundaries to understand better how firms differ in this regard, and we have collected empirical and case evidence of the challenges that large companies face in maintaining the pursuit of exploratory powers. In some cases, the shift towards an internal focus is warranted; in other cases, such as that depicted by the IBM story, it is inefficient and may ironically be an outcome of attributes that makes the organisation otherwise successful. In managerial research, we are discerning a set of best practices for how to keep organisations more dynamic. These ideas need to be customised to each company and situation, and not all apply to every firm, but corporations should be learning from others as they discern how to...
best foster new business opportunities in their companies to provide growth for tomorrow.

References

WPZ (Wirtschaftspolitisches Zentrum) is an initiative of the Institute of Economics (FGN-HSG) of the University of St. Gallen and is committed to the goals of

- cutting-edge research with policy relevance
- knowledge transfer to the policy community
- supporting upcoming research talents
- informing the public audience

Our activities range from fundamental research studies in cooperation with internationally leading scientists to regular commentaries on topical policy issues. We aim to stimulate the policy debate with insights from academic research and to contribute to a consistent reform agenda for Austria. To gain more relevance in the political decision making process, the insights and results of modern economic theory and empirical analysis shall be translated into widely accessible formats and communicated to policymakers and the general audience.

We are grateful for your support and hope that you will recommend the initiatives of WPZ to friends and potential supporters. Please stay informed about our activities on www.wpz-fgn.com and get in touch via office@wpz-fgn.com.